The Curious Case Of Xenobots Part 1 ' Patenting Of Living Machines

Published date27 January 2022
Subject MatterIntellectual Property, Patent
Law FirmGowling WLG
AuthorJayde Wood and Brian G. Kingwell

This article was originally published by The Lawyer's Daily, part of LexisNexis Canada Inc.

Since the 1970s when genetically-engineered bacterium capable of breaking down crude oil was held to be patentable subject-matter,1 much attention has been paid to the patenting of living inventions. This topic continues to elicit passionate responses. The curious case of xenobots, which are living machines assembled from frog cells, highlights some of the challenging questions living inventions pose to the patent system. The potential of xenobots is enormous, including use as a novel vehicle for intelligent drug delivery. At the same time, xenobots raise important questions regarding the patenting of living inventions.

Xenobots - Living machines that can kinematically replicate

Xenobots have recently featured in the mainstream media for being the world's first living machines and for being capable of self reproduction. Xenobots were developed by scientists at the University of Vermont, Tufts University, and the Wyss Institute for Biologically Inspired Engineering at Harvard University. Xenobots are made from frog cells (Xenopus laevis). When individual skin and heart muscle cells are removed from their native embryonic microenvironments and reassembled in a specific fashion, they self-organize into a functional morphology that exhibits distinct behaviours from the genomically specified default. In other words, the frog's skin and heart cells no longer function as skin and heart cells normally would (as individual components of a tadpole's body), but rather they become an entirely new independent organism that utilizes their unique morphological characteristics to enact tasks. For example, xenobots can exhibit coordinated locomotion via cilia present on their surface. They can navigate aqueous environments in diverse ways (including swimming and walking), heal after being damaged, show emergent group behaviors, and reproduce (by kinematical replication).

Xenobots are expected to have industrial applicability:

Given their nontoxicity and self-limiting lifespan, they could serve as a novel vehicle for intelligent drug delivery or internal surgery. If equipped to express signaling circuits and proteins for enzymatic, sensory (receptor), and mechanical deformation functions, they could seek out and digest toxic or waste products, or identify molecules of interest in environments physically inaccessible to robots. If equipped with reproductive systems (by exploiting...

To continue reading

Request your trial

VLEX uses login cookies to provide you with a better browsing experience. If you click on 'Accept' or continue browsing this site we consider that you accept our cookie policy. ACCEPT