The Trouble With IP For Digital Health And Precision Medicine

Published date20 July 2022
Subject MatterIntellectual Property, Food, Drugs, Healthcare, Life Sciences, Patent, Trade Secrets
Law FirmVenable LLP
AuthorMr Ha Kung Wong

Co-authored by April Breyer Menon

Two experts in biosimilar intellectual property (IP) law break down the issues that digital health and precision medicine face with IP and the history of case law that has created the current landscape.

Precision medicine is changing the treatment landscape for countless patients, but with the transformational advances come a host of intellectual property (IP) issues that must be overcome to ensure the continued evolution of these life changing technologies. With a focus on digital health, we will discuss what precision medicine is and the IP hurdles it faces, such as patent subject matter eligibility, proving infringement, and software licensing.

What Is Precision Medicine?

Precision medicine is a term used to refer to treatment and prevention strategies tailored to groups of people based on genetic, environmental, and lifestyle factors, instead of using a one-size-fits-all approach. "Precision medicine" is often used interchangeably with the older term, "personalized medicine," but is preferred by some because personalized medicine was often misconstrued as individualized treatments, not those developed for a group of people.

Targeted therapies are the foundation of precision medicine. They include cancer treatments that target proteins controlling cell growth. Many targeted therapies are small molecule drugs or monoclonal antibodies, which have targets inside and on the outside of cancer cells. Using these targets, the drugs can mark cells for destruction by the immune system, stop cancer cell growth signals, stop blood vessel growth, cause cancer cell death, prevent access to hormones necessary for cell growth, or carry toxins to the cancer cells. Targeted therapies differ from chemotherapy in that they act on specific molecular targets associated with cancer cells instead of targeting all rapidly dividing cells, and they often prevent cell growth (cytostatic) where chemotherapies kill cells (cytotoxic).

Along with targeted therapies, precision medicine may also utilize diagnostics. Diagnostics can perform a variety of functions, including identifying potential for disease, diagnosing disease, and identifying patients who may or may not benefit from a particular therapy. In precision medicine, diagnostics may be used to analyze a patient's genome for mutations or measure protein expression or metabolites to guide treatment decisions.

What Are the Benefits of Precision Medicine?

While precision medicine is still in its early days, its development and use is increasing because of its therapeutic and cost saving benefits. Ineffective medications are a concern for health care, from both a patient and cost perspective. As of 2015, for every patient that was helped by the 10 highest grossing medications, between 3 and 24 patients received no benefit.1 In 2001, a study showed that the available cancer drugs were ineffective for 75% of patients.2 Taking an ineffective drug subjects the patient to side effects without a therapeutic benefit, and prolongs the time to receiving an effective treatment, time during which their disease could irreversibly progress. Spending money on ineffective treatments is problematic, with an estimated $2.5 billion per year wasted on ineffective rheumatoid arthritis treatments alone.3 It was estimated that US pharmaceutical spending was over $575 billion in 2021, and given the high level of ineffective treatments, the overall waste could amount to billions of dollars each year.

Precision medicines and new diagnostic tools hope to provide prevention strategies and treatments more tailored to each individual. Targeted research is increasing, with 61% of clinical trials for cancer treatments conducted in 2019 using biomarkers, compared to only 18% in 2000. Precision medicine approvals have also been on the rise, accounting for over 25% of drug approvals each year since 2015, and with over 42% of new drug approvals in 2018 being precision medicines.4

As of 2020, there were 286 precision medicines on the market in the US. In addition, 24 new or expanded indications for in vitro diagnostic testing systems have been FDA-approved over the last 3 years that can inform targeted therapeutic decisions. The cost for sequencing a human genome has dropped from $100 million in 2001 to approximately $1000 in 2019, allowing for more frequent use of this technology and the potential to compile large databases of genetic information for analysis.

What Is the Role of Digital Health in Advancing Precision Medicine?

Digital health is...

To continue reading

Request your trial

VLEX uses login cookies to provide you with a better browsing experience. If you click on 'Accept' or continue browsing this site we consider that you accept our cookie policy. ACCEPT